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Moment Inequalities for the Boltzmann Equation and 
Applications to Spatially Homogeneous Problems 
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Some inequalities for the Boltzmann collision integral are proved. These 
inequalities can be considered as a generalization of the well-known Povzner 
inequality. The inequalities are used to obtain estimates of moments of the solu- 
tion to the spatially homogeneous Boltzmann equation for a wide class of inter- 
molecular forces. We obtain simple necessary and sufficient conditions (on the 
potential) for the uniform boundedness of all moments. For potentials with 
compact support the following statement is proved: if all moments of the initial 
distribution function are bounded by the corresponding moments of the 
Maxwellian A exp(-By2), then all moments of the solution are bounded by the 
corresponding moments of the other Maxwellian A] exp[-B~(t)  v 2] for any 
t>0;  moreover B(t)=const for hard spheres. An estimate for a collision 
frequency is also obtained. 
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1. I N T R O D U C T I O N  

The Boltzmann equation differs from other classical nonlinear equations of 
mathematical physics by its complexity. A fivefold collision integral makes 
it very difficult to evaluate the right hand side of the equation even for a 
simple non-equilibrium distribution function. 

The only exceptional case is the case of so-called Maxwell molecules, 
for which we can at least calculate in closed form all moments of the 
collision integral. This simplification gives an opportunity to reduce the 
spatially homogeneous Boltzmann equation for Maxwell molecules to an 
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infinite, but recurrently solvable, set of ODE's for moments of the distribu- 
tion function. This moment system of ODE's makes it possible to apply dif- 
ferent analytical methods and to study in detail properties of solutions/1~ 

However, the Maxwell model plays for the Boltzmann equation (at 
least in the spatially homogeneous case) almost the same role as equations 
with constant coefficients in the general theory of PDE. Analytical methods 
become much less efficient if we try to apply them to other molecular 
models (for example, to hard spheres). At the same time one can make 
precise calculations with the Boltzmann equation by using modern com- 
puters. Therefore in the theory of this equation we need mostly qualitative 
results which can be expressed by inequalities. A simple idea to generalize 
some methods, which were previously used for Maxwellian molecules, is to 
derive from the Boltzmann equation a set of differential inequalities for 
moments and then to study this set. Apparently the first step in this 
direction was made recently by Wennberg t2) from another viewpoint. He 
constructed a uniform upper bound for all moments of a spatially 
homogeneous solution in the case of hard potentials with angular cut-off 
(see also an important previous result of Desvillettest3)). We use some ideas 
of ref. 2 (the Povzner-type inequality and estimate of the loss term by 
H61der's inequality) in the present paper. 

The paper is organized as follows. In Sections2-4 some useful 
inequalities for moments of the Boltzmann collision integral for arbitrary 
intermolecular potentials are derived. To be more precise, we evaluate in 
Section 2 the integral of the Boltzmann collision operator for any convex 
function of energy and obtain a very simple estimate for hard spheres. In 
Section 2 we generalize this result to the case of arbitrary intermolecular 
forces. The main result of this part is formulated (Theorem 1) and dis- 
cussed in Section 4. We note that these inequalities for the collision integral 
can be useful for different problems. However, we consider their applica- 
tions only to the spatially homogeneous case. First, in Section 5 we 
generalize the above mentioned Wennberg's estimate to a very wide class 
of intermolecular forces including potentials with infinite radius of action. 
Simple necessary and sufficient conditions for the uniform boundedness of 
moments are proved in this Section (Theorem 2). In Sections 6-7 we con- 
sider solutions with Maxwellian tails. The main results of these Sections are 
formulated in Theorem 3 (hard spheres) and Theorem 4 (potentials with 
compact support). Roughly speaking, we prove the following fact: if all 
moments of the initial condition are bounded by moments of the 
Maxwellian A exp ( -  By2), then all time-dependent moments of the solution 
are bounded by moments of the other Maxwellian A1 exp ( -B j  v2). This 
result is proved with B~ = const for hard spheres and with B~ = const �9 e-~t 
for an arbitrary potential with compact support. 
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2. FIRST INEQUALITY  

Let f(v, t) be a time dependent distribution function in the velocity 
space, v E R 3, t ~>0. We consider the spatially homogeneous Boltzmann 
equation 

where 

(") d w d n u g  u, u { f ( v ' ) f ( w ' ) - f ( v ) f ( w ) }  (1) 

u=v-w, u=lul, lnl=1, v'=�89 w'=�89 

The function g(u, cos 0) is a differential cross section, 0 ~< 0~<~. In 
particular, 

d 2 
g(u, cos 0) = -~- = const (2) 

for hard spheres with diameter d, 

g(u, COS O) = U 4/Sgs(COS O) (3) 

for particles interacting with power-like potential U(r) = const r -s, s > 1. 
For any isotropic test function ~O(v2), we put 

<~/,> = ( f ,  ~)=fdvf(v, t) ~(v ~) (4) 

It follows from (1) that 

d 1 I dt (q/> = D ( f l  ~') = 2  dv dwf(v)  f (w)  uA[q/] ,  (5) 

where we omitted the irrelevant argument t. The linear operator A is 
defined by 

Our goal in this and next Sections is to establish some upper and 
lower bounds for A[~,]. It is well known that a simple and very useful 
inequality for 

Aq/= q/(v '2) + t//(w 'z) - q/(v 2 ) - q/(w 2 ) (7) 
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with if(x) = z p was first obtained, by Povzner. (4) One can find a derivation 
and applications of this inequality in a more recent treatise/5) Povzner's 
inequality was improved by Elmroth t6) and recently by Wennberg, t2) who 
used it successfully to obtain some important estimates for moments of 
solutions of the Boltzmann equation (see Section 5 for details). 

A simple idea of a further improvement of the Povzner-type 
inequalities is to estimate not the quantity (7), but its average A[qJ] (6). 
To do it let us consider an explicit form of the integral (6) in spherical 
coordinates with a polar axis directed along vector u = v -  w. We denote 

Uli 
/) = Ivl, w =  Iwl, s = x/1 - (vw//)w) 2, /t = - -  (8) 

U 

and notice that 

/2'2 = 1(/)2 ql_ W 2 @ U IV "3 I- W] COS ~ )  

W,2 = 1(/)2 ..{_ W2 21 - U Iv + w] c o s  ~ )  (9 )  

u 2 IV "4- WI 2 = (/22 _{_ w l ) l  _ 4(vw)2 

where 0 ~< fl ~< r~ denotes the angle between vectors n and (v + w). In our 
coordinate system, integral (6) reads 

A [ 6 ] =  _ l d / t g ( u , / t )  dqg[I]l(/2ta)"Jc-lp(W'2)--r (10) 

where v '2 and w '2 are defined by (9) with 

cos fl =/t/ t ,  + ~/1 - ] . / 2  %/1 --/t 2 COS Cp, 

Noting that 

U(V -'~ W) = /22  - -  W 2, 

we obtain from (9) 

v2+ 
/2r2 

2 

/22 _]_ 
W r2 

2 

u(v + w) 
/t~ u I v + w l  

u Iv + w] cos fl =/t(/22 _ w 2) + 2/2w x/1 _ / t2  s cos q~ 

W 2 /)2 W 2 
_ _  (1 +/t/to +,~/1 _/t2 x/1 _/to2 s cos 9), /)2 + ~ ( 1  +/to) 

W 2 /)2 W 2 
- -  ( 1 - / t / t o - , / 1 - / t 2 , / 1  c o s  w 2 + (1 - / to )  

/22 _ W 2 

~to /22+w 2 (11) 
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Formulas (10)-(11) give an explicit representation 
A [ r  Now one can easily prove the following estimates. 

I . e m m a  2.1. If ~(z) is a convex function, then 

A_[ ~,] <<.A[~,] <<.A +[~,], 

where 

1187 

of the integral 

1 

A [~b]=fo d x b ( u , x ) { ~ [ x v Z + ( 1 - x ) w  2] 

+ ~b[xw 2 + (1 - x)/)2] _ ~,(v 2) _ ~b(w2)}, 

b(u, x) = 4zrg(u, 1 - 2x), u = Iv - w[, 

A + [ ~ , ] =  _ d/~ (1 

+ ~ [ / ) 2  + w 2 ~ ( l  _ g ) ]  _ ff(122) -- if(w2)} fo2~ dcpg(u, cosy), 

12 2 - -  W 2 

c o s ~ = , ~ o + . / 1 - ~ 2 . / l - ~ c o s ~ .  ~0 /)2+w2 

Proos We set in (11) 

/)2 -[- w2 
W t 2  = B_ -- Cs cos cp, B+ - 2 i),2 = B +  + Cscos r 

C-_122+w------~21x/-~--~-~21x/l~-p~, s=x/1-(vw// )w)  2 
2 

and consider the inner integral in (9) 

27~ 

K(s) = fo d~~ q'(12'2) + r 2)_  r 2) _ q,(w2)] 

(12) 

(13) 

(14) 

- -  (1 +/~/~o) 

K , ( s )  = = + c s c o s  

as a function of 0 ~< s ~< 1. For a proof of (12)-(14), it is sufficient to prove 
that K(0) ~< K(s) <~ K(1) for any convex function ~k(z). First we consider the 
integral 
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An elementary transformation yields 

Kl(S) = 2 f~ dr [ if(B+ + Csr) + ~(B + - Csr) - 2q/(v2)]. 

For a smooth function ~k(z) we obtain 

8--~=2C /7---Zi[O'(B+ +CsT)-tP'(B+-Cs~)]>~O, 
x/1 - V  

(15) 

since C > 0 and O"(z) >/0 for any convex function. For the general case we 
can use the fact that the convex function O(z) has almost everywhere a 
monotonically nondecreasing derivative O'(z) (see, for example, ref. 7). 
Therefore the equality (15) proves that Kl(0)~< Kt(s)~< K( 1 ). Repeating the 
same considerations for 

Kz(s) = ~2jo ~ dcP[ ~9(w'2) _ ~(w2)], 

one can conclude that 

K(o) < K(s) = K,(s) + K~(s) < K(1 ), 

~ ( 1  - - O(w2)}, 

/<(1)= ae O ~ ( l + c o s r )  

+0 [  v2+w2_5__(1 ,)] q~(v 2) -cos - - ~(w2)j, 

where #o and cos ), are defined in (14). Substituting the inner integral in 
(10) by K(0) and changing variables to x = ( 1 - # ) / 2 ,  we just obtain the 
lower estimate (13). Then we substitute K( 1 ) into (10) and use a symmetry 
property 

which is obviously valid for any - 1  ~< #o ~< 1 in (14). It results in the upper 
estimate (14) and completes the proof. 
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As an example of estimates (12)-(14) we consider the case of hard 
spheres (2). Then 

2 [- 2 r v2 ] 

[ Jw2 
F 2 ~ ~2 + w2 J 

= L  2-77w  jo 

(16) 

If ~(z) = z", n = 2, 3,..., then we obtain the following simple inequality 

n I n _ l ( v 2  n w2n) 2rid 2 , l ( k  ) n +  lk=12nd2 ~ V2kW 2u'-k)  ~ A[/)2n] ..{_ ~ ' 1  + ~ n ~ l -  k = l ~  l")2kw2(n--k) 

(17) 

which demonstrates the accuracy of our estimates. 
Thus inequalities (12)-(14) are sufficiently simple and convenient 

for the case of isotropic scattering, i.e. for g(u,  cos 0 ) =  ~(u). The most 
important upper bound A+[#J] (14) is still too complicated in general 
case. Therefore it is desirable to simplify the integral (14) and to 
obtain approximate formulas similar to (16) for the case of non-isotropic 
scattering. We consider this problem in Section 3. 

3. S E C O N D  I N E Q U A L I T Y  

To study the integral (14) we fix v and w and simplify notations by 
omitting all irrelevant arguments v 2, w 2, u =  Iv-wl .  Then we rewrite (14) 
as a function of/~o = (v 2 - wZ)/(v 2 + w 2) 

= = d/t dq~ ~(cos y)[ ~(/~) - ~(/Zo) ] (18) A+[r F(/~o) -1 

c o s ~ = ~ m + ~ / l - ~ / l - ~ , g c o s ~ o ,  g(cos~,)=g(u, cosr) (19) 

(the tilde being omitted below). 
The integral (18) is just the one speed collision operator, and its 

properties are well-known from linear transport theory. ~8) In particular, for 

= d/z #(/~) P2,(/~), (20) ~([d) anR2n(It)' a " = 4 n +  1 -1 
n=O 

822/88/5-6-13 
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we obtain 

F(l~o) = -  ~ g,a, P2n(l~o), 
n = l  

1 
gn=2rc f dl~g(lu)[1-P2n(lu)] (21) 

I 

where P2n(ll) a r e  Legendre's polynomials (note that ~b(/~) in (18) is always 
even function). 

Remark. To prove (21), it is sufficient to substitute (20) into (18) 
and use the addition theorem for P2n(/~). 

If g = const, then (18) can be written as 

F(/zo) = F(1) + a[ q~(1) - q~(/Zo)], a = 4zcg = const. (22) 

This formula is convenient for an even convex function ~(/~) since ~(0) ~< 
~(1) and F(1)~<0. Let us try to estimate the difference [F( /~0)-F(1)]  in 
the general case. Using the expansion (20) we obtain 

F ( / t o ) - F ( 1 ) =  ~ gna,[1-P2,(/to)]. (23) 
n = l  

Suppose that an ~> 0 for all n = 1, 2 .... and 

1 

a = 2 n f  d/~ g(/.t) < or; 
- - 1  

(24) 

then all terms in (23) are non-negative (IPn(/~)l ~< 1) and 

F(/~o)--F(1)~llgll [~(1)--~( /~0)] ,  Ilglt =sup g . ~ 2 o  . (25) 
n > ~ l  

The condition (24) is not valid for long range potentials. However in 
this case one can easily estimate (23) for a polynomial case 

N 
�9 (/~)= ~ a~P2.(/~), a.>~O. 

n = O  

Then 

F( , t t o ) - -F ( l )<~ l lgNI  I [ ~ J b ( l ) - - ~ ( / t o ) ] ,  I IgNII  = m a x  g . .  (26 )  
l ~ n < ~ N  
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Thus we do obtain simple expressions (25), (26) for upper bounds of 
(19) provided that all coefficients a n in (20) are non.negative. Let us check 
this condition for the most important case ~b(z)=zP(p > 1) in (18). Then 
(ref. 9, p. 837) 

16(v2 + w2)P f l  
an-- 4 n + l  dxx2p+lP2"(1-2x2)  

8(v2 + w2) p [ F ( p +  1)] 2 

(4n + 1 ) F(p + 2n + 2) F(p + 1 - 2n)' 
(27) 

so that a sign of a,  is defined by 

F ( p +  1) 2. 1 ([p] } 2n--I 

1 - ' ( p + l - Z n ) -  I-I ( p - k ) = l I - I  ( p - k )  ( - 1 )  [p]+' 1-[ 
k=O k=0 k = [ p ] + l  

(k-p), 

where [p ]  denotes an integer part of p (the second formula makes sense 
only for p < 2n - 1 ). Hence, the condition a,/> 0 is fulfilled for ~b = z p if ( 1 ) 
p = 2 ,  3,... is an integer number or (2) 2 m +  1 < p < 2 m + 2  for certain 
integer m ~> 0. The coefficients a ,  are negative if 2m < p < 2m + 1 and 
2 n > p + l .  

If coefficients a,  are partly negative, we set 

~ ( f l ) = ~ b + ( f l ) - - ~  ( / / ) = ~ - ~ '  anP2n(/t)-Z" lanl P2.(la) (28 )  

where the sum ~ ' ( Z " )  is taken over such n ~> 1, that an > 0 (an < 0). We 
also assume that a < ~ and 

O + ( 1 ) -  O+(~) 
1 ~< 2 = sup < oo, O(/~) ~< O(1), (29) 

then the sum (23) can be estimated by 

F(/zo)-F(1)•(r ~. a.[1-Pz.(/Zo)]+ll~.ll ~ [a,,,I [1-P2.(/~o)], 
n = l  n = l  

1 

II~ll=sup 2~ I dltg(lZ) Pe.(lt). 
n>~l --1 
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Noting that 

a . [  1 - Pzn(P)] = ~b(1) - qs(At), 
n = l  

[a,, I [ 1--P2n(/I)] = 2 [ ~ + ( 1 ) - - ~ + ( u ) ] -  [~ (1 ) - -  ~(/2)] 
n = l  

~< (22 - 1)[ ~(1) - ~0(/t) ], 

we obtain 

Bobylev 

lemma. 

Lemma 3.1. 

(i) If 

r = 

then 

Let the function F(/~o) be defined by (18), g(p)>>. O. 

a.  P2~(fl), an~O; 
I 

f d/~ g(p)(1 -/~2) < ~ 
- -1  

(30) 

F(kto) ~< F(1) + II gNII [ @( 1 ) -- qb(kto) ], 

I<~n<~NL -1  

(ii) If 

45(/~)= ~ a.P2.(#),  ~ la.I < Go; 
n = l  n = l  

and the conditions (29) are fulfilled, then 

d/~ g(p)[ 1 - P2,(P)] }. 

1 

a = 27r f d/t g(/~) < 0% 
1 

F(~0) ~< F(1) + [ a  + ( 2 2 -  1) Ilgll ] [ ~ ( 1 ) -  ~(Po)],  

where 2 is defined by (29), and 

2n f 1 Ilgll -- sup dkt g(p) P2.(/t)l ~< a. 
n ~ > l  - -1  

(31) 

( 3 2 )  

(33) 

(34) 

F(po) - F ( 1 )  ~< [ a +  ( 2 2 -  1) If~ll ] [ ~ ( 1 ) -  #(Po)].  

Collecting some inequalities, of this Section we can formulate the following 
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Corollary. If in (18) 

p > l  (35) 

and ~ < m, then there exists a number A > 1 such that 

Fp(iao) <~ Fp(1 ) + 2Aa[ ~p( 1 ) - ~p(/~0)] (36) 

simultaneously for all p > 1. Moreover, this inequality with A = 1 is valid 
for all p satisfying the condition 2m + 1 ~< p ~< 2m + 2 with some integer 
m >i 0 (in particular, for all integers p = 2,...). 

Proos According to (27), the condition 2rn + 1 ~< p ~< 2m + 2 guaran- 
tees that all an/> 0 and therefore 2 = 1 in (33). Using the inequality (34), we 
just obtain (36) with A = 1. If 2m < p < 2m + l(m = 1,...), then 2 = 2(p) in 
(29) and (33). What we need is to prove that there exists A = SUpp>~l 2(p). 
Towards this end, we note that an < 0 in (26) only for sufficiently large 
n>(p+l) /2 .  Therefore ~ 7 ( / ~ ) ~ p ( / , )  for p ~ o o  (we define ~p+(/~) 
similarly to (28)) and 2(p) --, 1 since ~p(/~) is sufficiently smooth at/~ = 1. 
This completes the proof. 

One more simple inequality for F(~0) (18) can be obtained for any 
convex function ~(/1). We rewrite (18) as 

fl = d,u g(/~) d(p[ ~(cos Y) -- ~(/~0) ] F(~R ~ --1 (37) 

and then estimate the inner integral 

I •  de{ r  + cos ~i - r fi-.  
2< r  + ~ `/1 -~o 2) + r  lffi-s~-~ ,/1 -~o 2) - 2r 

(38) 

by using convexity arguments similarly to the proof of Lemma 1. Noting 
that Po = ( v2 - we)~( v2 + w2), we obtain 

v 2 + W 2 [ l + / t / t o +  l ~ - ~ 2 ` / 1 - / t ~ ] =  v - - + w  
2 - 

(39) 

~ [ 1 - / t / t o _ _ _  l x ~ - ~ 2 ` / 1 - / ~ ] =  v + w  

and formulate the resulting inequality in terms of the function ~k(v:). 
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Lemma 3.2. 
of A+[~,]  (14) is valid 

[. To/2 
A+[~O]~<Jo dOG(O){O(vcosO+wsinO) 2] 

+ r  cos 0 -  v sin 0) 2 ] - ~k(v 2) - ~b(w2)}, 

where 

For any convex function if(x) the following estimate 

(40) 

G(O) = 2n sin 20[ g(u, cos 20) + g(u, - c o s  20)]. 

Proof. We estimate (37) by the inequality (38), then substitute q)(/~) 
by if(z) (19) and use formulas (39). Putting/~ =cos  20 in (37) we obtain 
the final result (40). 

Remark. This lemma shows that one can use the simple Kac equa- 
tion to estimate integrals (5) for a convex function if(z). Moreover it is 
possible to use (40) for a simplified proof of Lemma 3.1 (with a convex 
function q~(/~)!) by replacing Pzn(COS 0) by cos 2nO. 

However we seek more general results without convexity. 

4. ESTIMATES FOR MOMENTS OF THE COLLISION TERM 

It is convenient to put together some relevant estimates from Sec- 
tions 2-3 and formulate the result in terms of equalities (4)-(6). We assume 
that A[~,] is defined by the equality (6), g(u,p)>~0, and 

1 

cr(2)(u) = 2~ f dla g(u,/.t)( 1 _~2) < oo. (41) 
1 

We also assume that ~,(z) has a continuous derivative O'(z), z ~> 0, to 
guarantee a convergence of the integral (6) for long range potentials. Then 
the following theorem is valid. 

Theorem 1. 

(i) If ~(z) is a convex function, then 

e l  
A[ 4,] ~> Jo clx b(u, x){ 4~[x, 2 + (1 - x) w q  

+ ~[xw 2 + (1 - x )  v 2 ] - ~b(v 2) - ~b(w2)}, 

b(u, x) = 2zcg(u, 1 - 2x), u -- I v -  wl, (42) 



Moment Inequalities for Boltzmann Equation 1195 

/, ~z/2 
A[qJl  ~< Jo dO G(u, 0){4,[(v cos 0 +  w s in  0)21 

+ ~b[v sin 0 - w cos 0) 2 ] - qJ(v 2) - qj(w2)}, 

G(u, 0) -- 2re sin 20[g(u, cos 20) + g(u, - c o s  20) 1. (43) 

(ii) If if(z) is a convex function and 

J-- [_ L J  fll d~ if/[z ] ~-~I  P2n(fl) ~0' /.~= I,...; z>O, (44, 

then 

A[~,]  ~< g , [  q4v 2 + w 2) + 4/(0) - q,(v 2) - r  

- 2 ~  I~, d/~g(u,/.t){~(v2 + w2)+ ~ ( 0 ) - ~  I v2 2 w 2 ( I  +/.t)] 

,4,,  

{ fl } g , = g , ( u ) = s u p  g n = 2 g  d1~g(u, l l)[1-P2,,( l~)]ln=l, . . . ;a~>O. 
--1 

(iii) If q/(z) = z p and 

a = 2~ dl~ g(u,/1) < oo, (46) 
1 

then there exists a number A >/1 such that for all p/> 1 

A[o2P 1 ~ --~.p(~j2--}-w2)p+2A6r[(I~2+w2)p--I)2p--W2p], (47) 

' I ( i - . ? i  .~p =.~p(u) = 2~ I, a~ g(u, ~) 1 \ - 5 - /  - \ - 5 - / j '  (48) 

this inequality with A = 1 being valid for all p such that 2m - 1 ~< p ~< 2m 
for a certain integer m = 1, 2 ..... 

Proof. Inequalities (42) and (43) are taken from Lemma 2.1 and 
Lemma 3.2. The inequality (45) was proven in Lemma 3.1. Moment 
estimates (47) can be easily obtained by substitution ~(z )=z  p into 
(18)-(19) and using the inequality (36). This completes the proof. 

R e m a r k .  Ifg(u, p) does not depend on p (isotropic scattering), then 
(47) is valid even with A = 1/2. In this special case it is more convenient to 
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use directly Lemma 2.1 with simple formulas (16), where d =  d(u) for "soft 
spheres." 

In order to apply the theorem to the Boltzmann Eq. (1) with long 
range potentials we consider (45) with ~O(z)=z m, m = 1, 2 ..... Then 

A[Zm]~g,[(V2-~w2)rn--1)2m--w2m]--~m(V2"~w2)m (49) 

where )~m is defined by (48), 

g,(U)~-l<~n<~mmaX {2n flldpg(u, lu)[1-P2,,(p)]}. 

Putting 

( 1 P 2n(~ / ) n m = max ~ sup ~, (50) 
3 

we obviously obtain g.(u)<~ B,,a~2)(u) (41). 
Moreover 

,~p(u)/> 22(u) = �89 p/> 2, (51) 

since (3,~p/Op > 0. Therefore we obtain from (49) a simple estimate 

A[v2m] ~< �89 + w2)m _/ )2m __ w2m] __ (/)2 ~_ we)m}, m = 2, 3 .... 

(52) 

where B m (50) depends only on the number m. It is clear that B m 

B 2 = 3/2. 
On the other hand, it follows from (42) that 

A [  v2m] ~> Z [ D2kw2(m-k) Al-w2k~)2(m-k)-f)2m-W2m] 
k = l  

1 
Xfo dx g(u,x) xk( 1 --X) m-k. 

Let v >/w, then 

1 A[V2m]~ v2m ( k ) I  (w)2k][1--(W)2(m k) 1 

1 
xfo dxb(u,x) xk( 1 -x)  m-~ 

1 

) --u2mf dxb(u,x)[1-xm-(1--x)m]. 
Oo 
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Using the elementary inequality 

m--2 
1 --xm--(l  --x)m=X(l --X) ~ [xkq- ( l  --X) k] ~<2(m-- 1)X(1 --x)  

k~O 

and definition (42) of b(u, x), we obtain a lower bound 

m - 1  
A[/)  2m] /> - - - -  o'(2)(u) m a x ( v  2m, w2m), m = 1 .... (53) 

2 

Using (52), (53) one can easily prove the following statement. 

C o r o l l a r y  1. Moments (5) of the Boltzmann collision integral (1) 
satisfy inequalities 

1 n 
f dv dwf(v)  f (w)  ua~2)(u) v 2n (54) D(f[ 19 2n) ~ -- T 

t" 
D(fl v 2") ~< - (2" 1 _ 1 )(2B. - 1 ) J dv dw f(v)  f (w)  UO'(2)(U) W V  2n 1 

l f d v d w f ( v )  f(w)ua~2)(u)v2n, u =  Iv -wl ,  
2 

n =2,  3,..., 

(55) 

where a~2)(u) and B. are defined in (41) and (50). 

Proof. It is sufficient to substitute (52) and (53) into (5) and use 
elementary inequalities 

max(x, y) ~< x + y 

k= l  

~< 2(2 ~ - 1 - -  1 )(xl/2y n- 1/2 + y 1/2xn -- 1/2) 

x~>O, y>~O, n = 2 , 3  .... 

Estimates (54) (55) are especially convenient for long range potentials 
since the cross-section a~2)(u) is always finite (otherwise the integral over 
unit sphere (6) diverges even for differentiable function qs(z)). However 
these estimates can be improved in the case of potentials with finite radius 
of action. In this case a total cross section (46) is finite and we can apply 
the inequality (47) and obtain the following result. 
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Corollary 2. If the condition (46) is fulfilled, then for any P0 > 1 
and for all p >~ Po 

D( f l v ~p ) ~ Aa f dv dw f(6) f(w) u[(v 2 + w2) p - v 2p - w 2p ] 

- - l f d v d w f ( v )  f(w)u2po(u)(v2+w2)p, u = Iv-wl , 
2 

(56) 

where A ~> 1 and 2p0(u) ~< a are defined in Theorem 1 (iii). 

Proof. We substitute (47) into (5) and use the fact that 2s,(u ) (48) is 
a monotone function of p/> 1. 

Inequalities (54)-(56) will be used below to estimate moments of the 
distribution function f(v, t). 

5. MOMENTS OF THE SOLUTION 

We consider the Boltzmann equation (1) with initial condition 

/l,=O=/o(V)> j'aV/o(v)=l, Iavv2lo(V)=Eo> Ho=Idvlo(v)lnlo(v) 
(57) 

and assume that there exists a solution f(v, t) of the Cauchy problem (1), 
satisfying conservation laws and H-theorem (see ref. 5 for a review of 
existence theorems): 

f&<f(v,t)=l, fdvf(v,t) v2=&, fdvf(v,t)lnf(v,t)<~Ho. (58) 

Moreover we assume formally that all integer moments of the solution 

m , ( t ) = f d v f ( v , t ) v  2", n = l , 2  .... (59) 

are finite. Our aim is to estimate upper and lower bounds of ran(t). This 
problem was recently considered by Wennberg ~2~ (see also the previous 
paper of Desvillettes ~3)) who obtained such estimates for hard spheres and 
power-line potentials with angular cut-off. Wennberg's results are based on 
his version of the Povzner inequality for A~s(z) (7). Using the stronger 
inequality (55) and following the same ideas, one can easily generalize the 
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results of ref. 2 to a very wide class of intermolecular potentials. To be 
more precise we assume that 

Gu y <<. ua(2)(u) <<. c2u + c3 (60) 

for certain c~, 2, 3 > 0 and 0 < 7 < 1. 

Theorem 2. If a(21(u) (41) satisfies the condition (60), then all 
moments (59) of the solutionf(v, t) of the Cauchy problem (1), (57) satisfy 
inequalities 

mn(t ) ~<m*[1 - -e  - ~ t ]  -~/2n, n = 2 ,  3,... (61) 

where the constants m*, 2n depend only on n, Eo, Ho, ~, c~,2,3. If 
ua(2)(u) ~< c3, then 

1 C31 , n = 1, ... (62) 

R e m a r k .  Inequalities similar to (61) were first obtained by 
Wennberg (3) for a special case 

1 

f d / l h ( /~ )<~ ,  0~<f l< l .  g(u, ~)  = u~h(~), -1 

He also noted that they are not valid for pseudo-Maxwell molecules 
( f l=  1). 

Proof. Noting that (5) 

dm.( t) _ D( f l  v 2~) (63) 
dt 

and using the lower estimate (54) we immediately obtain the second 
inequality (52). To prove (61) we merely repeat Wennberg's arguments. (2) 
First we apply Arkeryd's result (~~ 

f d w f ( w ,  t) Iv -wl~>q(~ ,  E0, H0) (64) 

to a negative term in (55) and obtain 

f dv dw f(v,  t) f (w,  t) ua(2)(u) w2">~clq f dv f(v,  t) v 2n+~ (65) 
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Then we note that 

f dv f(v, t) v 2"+y i> [m.( t ) ]  l +y/2. (66) 

because of the H61der inequality and the normalization condition mo(t) = 1 
(58). 

To estimate a positive term in (55) we note that w < l + w  2, 
v2. - 1 < 1 + v 2" and u ~< 1 + v + w. Therefore 

f d v d w f ( v ,  t ) f (w ,  t)[c2u-[-c3] +Eo)[  1 +m, ( t ) ] .  WU 2n I ~ (c3 q- 3c2)(1 

(67) 

Substituting (65)-(67) into (55) and (63) we obtain a differential 
inequality 

dmdt" ~< A,,( 1 + m ~) - Dm l n + y/z., 

with 

n = 2  .... (68) 

A n = ( 2  " - 1 -  1)(2B n -  1)(c3+3c2)(1 +Eo)  , D =  ~clq . 1  

A substitution 

results in the inequality 

dY + ay[ l + yb] >~ l, b 2n ~ A n - -  = - - ,  a = -  - - .  
dt ~ 2n D 

(69) 

(70) 

One can easily prove (see Lemma 6.3 in Section 6 for details) that 

y( t )  ~ y , (  1 - e-a') ,  (71) 

where y ,  is a unique positive root of algebraic equation ay,(1 + y , ) =  1. 
Hence, the moments (65) satisfy inequalities (61) with 2,,=A,,, m * =  
(y,)-2n/y. This completes the proof. 
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Conditions (60) have a clear physical meaning. If O'(2)(U) (41) is finite, 
then the upper bound in (60) is almost trivial. This condition is fulfilled for 
any physically relevant intermolecular potential U(r), where r > 0 denotes 
a distance between two particles. Under some natural restrictions on the 
potential U(r), the lower bound in (60) is equivalent to an asymptotic 
inequality 

a(2)(I,I)~C1 u- f l ,  U"'400, ~ = 1 - - 7 > 0  

If U(r) ~ Go as r ~ 0, then, roughly speaking, we obtain for u ~ 

m u  2 
a~2)(u) ~ const r2(u), U(r~ = 4 

where m is the mass of a particle, and r 0 is a minimal distance between two 
particles with given relative energy T =  mu2/4. Assuming that 

U(r) ,~ - r ~ O, (72) 
rs ~ 

we obtain 

r o ~ \ m u 2  j , a(2)(u) ~ const u-4/s, U "--~ GO. 

Hence, the first condition in (60) with 7 = 1 - 4Is > 0 is fulfilled for a 
wide class of potentials with asymptotic behaviour (72), where s > 4. In the 
opposite case s < 4 the inequalities (62) are valid. 

If the potential U(r) has a hard core, i.e. U(r) ~ ov as r ~ dmi n then 
particles with large relative speed u ~ ~ interact like hard spheres with 
diameter dmin. Therefore 7 = 1 in (60) for this case, 

Thus we proved for a wide class of intermolecular potentials U(r) 

(including power-like potentials (3) for s > 4 without cut-off and potentials 
with compact support satisfying conditions (60)) that all moments of the 
solution to the Boltzmann equation ( 1 ) are uniformly bounded for all t > 0. 
This result is mainly interesting for slowly decreasing (with Ivl--, oo) initial 
conditions with finite number of moments at t = 0. 

However such initial conditions are not typical for applications of 
the Boltzmann equation. Usually we have a distribution function with the 
Maxwellian tail and need to estimate a possible growth of the tail. The 
above obtained estimates (61) are too rough for this problem. Therefore we 
shall construct some more precise estimates in Section 6 for a special case 
of hard spheres. 
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6. SOLUTIONS WITH M A X W E L L I A N  TAILS 

We consider the Boltzmann equation (1) for hard spheres (2) with the 
initial condition (57). Our goal in this Section is to prove the following 
theorem. 

Theorem 3. If 

fdvfo(v)lnfo(V)<Oo, fdvfo(v)e~ (73) 

for a certain 0 > 0, then there exists 0 < 0.  ~< 0, such that for all t > 0 

F ( 0 . ,  t) = f  dv f(v, t) e~ < oo. (74) 

Proof. First we note that 

- k f(z) = f dv f(v) eZV2- = ~ ~ m., m .  

Therefore F(z) is an analytic function for ]z[ < R, where 

R - I  = lim sup ~ (75) 

To prove the theorem it is sufficient to estimate the moments m,(t) of 
the solution by inequality 

m.(t) < Q(n) a"n!, [ Q(n)] 1/n __4 l ,  

for certain a > 0, provided that (73) 

lim sup = a0 < 0 1. 

All necessary estimates are given below in Lemmas 6.1-6.4 provided 
that all moments rap(t) of integer and half-integer orders p = 1, 3/2, 2 .... are 
continuously differentiable functions of t e R § 

Lemma 6.1. The moments 

rap(t) = f dv f(v, t) v 2p, p = 3/2, 2, 5/2 .... (76) 
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satisfy the following set of inequalities: 

l d m n <  2 n lQk ) n--lml+l/2',  
[r dt "~- f f -~51 m ~ + l / 2 m , _ ~ - q ~  , , n=1,2,3 , . . . ;  

1 dm,+l/2<~ 2 mk+l/2m, k -  
a dt k=l k mi/2mn+l/2+mlmn 

2n - 1 ...1 + l/(2n + 1) 
- -q~ -n~- , ,+ , /2  , q=q(1, Eo, Ho)/a, 

1203 

(77) 

n = 1, 2, 3,...; 

(78) 

where q(1, Eo, Ho) is defined in (64). 

Proof. The above obtained inequality (12), (16) for hard spheres 
results in 

1 dmp 1 r 
-tr dt < ~ - - J  dvdw l t) f ( w , t ) l v - w [  

1 X { [ (1)2 qt- w2) 2p --1)2P -- w2P ] -- ~ ( p --1)(1) P "}- w2P ) } 

= S + - Sp ,  p >~ 1. (79) 

Using Carleman's estimate (64) with ~, = 1 for the collision frequency 
and H61der's inequality (66), we obtain 

S p > q P - ! m p + l / 2 > ~ q p - 1  1 + 1/2p p + 1 ~ mp , (80) 

that is just the negative term in (77)-(78). To get the positive term in (77) 
it is sufficient to use a trivial estimate ]v - w[ ~< v + w in (79) for p = n. The 
positive term in (78) follows from inequalities 

I v - w l  [ I)2 "~- w2)n + |/2 --1)2" + l -- w 2n +1 ] 

k=l  

"{- u2n[(1) 2 "}- W2) 1/2 - - / ) ]  "{- w2n[ (/) 2 "5 t- W2) 1/2 --  W] } 

~< 2(V2 + w 2) 1)2kw2(n k) ~_ (I.) -}- W)[ uinw + W2nl) ]. 
k= l  

This completes the proof. 
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We assume that mo(t)=l,m~(t)=Eo=const. The first ( n = l )  
Eq. (78) includes ml/2(t). To eliminate this quantity one can use an obvious 
inequality 

ml/2 ~< ~ [ or + 9 1  (81) 

with appropriate ~ > 0. 
Let us change variables in (77), (78) putting 

mp(t)=AF(p+l/2)aPzp(r), r=Acrv/-at, p=1/3/2,2 .... (82) 

with certain positive constants A and a. Moreover we estimate m~/2 by the 
inequality (81) with 0c = ~/2; then 

Eo m~/g(t)<.G a~/Z[l +AF(3/2)Zl], AF(3/2)z~- . 
a 

(83) 

Thus we obtain the following set of inequalities for Zp(r): 

dz,< 2dz..~ ' ( k )  F (k+ l )F (n -k+ l /2 )  
= 1 F(n + 1/2) z~ + ,/2 z, k 

n - 1  --q-~-~ A- ( ' -  l/2")[ F(n + 1/2)] '/2" (Zn) l + l/2n, 

dZ n + l /2 ~ 4  [ 
=1 F(n + 1/2) 

Zk+lZn k 

F(n+ l/2) zlzn+~(A l + F(3/2) z,)z.+l/2] + F(3/2)F(n + 1 ) 

2 n - 1  1/(2n+l) A ( l_l /(2n+l)) .rl+l/(2n+l) 
-- q ~ - ~  [F(n + 1)] " n  + 1/2 , 

(84) 

(85) 

The inequalities can be simplified by using some estimates for the gamma- 
function. 
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Lemma 6.2. It follows from (84), (85) that 

dz~< 4 max (Zk+l/zz.  k) q A - ( l  i/z.~ ~+~/2. (86) 
dT l < ~ k < ~ n - - I  - -  Z n  

dz"+ 1/2 ~< 2n(1 - d.  1) 
& max  (ZkwlT-n_k)-{--~Y-lZn 

l < ~ k < ~ n - - I  

1 ( Eo) q A _ ~  1/(2n+l))71+l/(2n+l) 
+ ~  1 + ~ -  Zn+l/2-- ~ --n+l/2 n ~ l ~  .... 

(87) 

Proof. We note that (ref. 9) 

F(x) F(y) 
_r(z + 1) = zr(z), 

r(x + y) 
B(x,  y ) =  dssX- l (1  - s )  y-1 

Therefore 

n + l  k=l F ( n + l / 2 )  

2F(n + 3/2) nS,1 ('n'~ 
(n+ i-)-F~+ ~/2) k% \kJ B(k + 1, n - k +  1/2) 

2 n + l  fs 
-- n + l  d s s - 1 / 2 [ 1 - s ' - ( 1 - s ) n ] < ~ 4  

2 n + 3  k=l F(n + 1) 

= B(k + 3/2, n - k + 1/2) 
(2n+  3) F(n + 1) k=l 

_ 8(n + 1 ) i ~ ds s~/2( 1 - s) -1/2 [ 1 - s "  - (1 - s) n ] <~ 4B(3/2, 1/2) = 2z~ 
2n+  3 Jo 

This gives the above estimates (86) and (87) for sums in (84) and (85). 
To complete the proof we estimate other terms in (84) and (85) by some 
obvious inequalities: / ' (p  + 1/2)>~ 1 for p ~> 3/2, ( n -  1 )/(n + 1)~> 1/3 for 
n>~2 and 

4/'(3/2) F(n + 1/2) zc zc 2n - 1 > ~  
( 2 n + 3 ) F ( n + l )  <<'~---n~<~5 ' 2 n + 3  

for n/> 1. Lemma 6.2 is shown, 

822/88/5-6-14 
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We note that inequalities (86) and (87) are valid for any positive A 
and a. The next step is to choose A and a in such a way that the inequality 
Zp(t) ~< 1, p = 1, 3/2, 2 ..... holds for all t > 0 if it is fulfilled for t = 0. First we 
restrict a by the condition 

then 

a >~ E0 max(2A - 1, AF(3/2)), (88) 

moreover 

x( t )<~x ,[1- -e  -~]  q, f l=Cxl/q.  (94) 
q 

R e m a r k .  In this Section we need only the inequality (92). The 
second inequality (94) is necessary to complete the proof of Theorem 2 in 
Section 5. 

1(1 
Zl - AaF(3/2) ~ 1, ~-~ + ~< 1. (89) 

Let us now combine (86) and (87) and consider simplified inequalities 

dzp'<FP(Z'dr "~ ..... Zp l /2) 'k-Zp--,~A (1-%)Zp1+% 

2=q/3 ,  %=1 /2p ,  Fp~2=8 max (zkzp_k+l/2), (90) 
I ~<k ~< [ p ]  

r3/2 = re/5, p = 3/2, 2, 5/2,.... 

A solution of differential inequalities (90) can be estimated by the following 
lemma. 

L e m m a  6.3. If x(t) satisfies the inequality 

dx 
~-~ <~ B + x -  Cx ~ + l/q, (91) 

with certain positive constants B, C, q, then 

x(t) <~ max[x(0), x , ] ,  (92) 

where x ,  is a unique positive root of the algebraic equation 

B ~- x• = C x  1+ l/q. (93) 
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Proof. Changing variables in (91) we obtain 

x(t)= [y(t/q)] q, -~Yt + y [ 1  +by q] >~ C. (95) 

We note that there exists a unique number y ,  > 0, such that 

y , [  1 + By q ] = C 

If y < y , ,  then y , > 0 .  Therefore y(t)>~y(O) for all t~>0 if y ( 0 ) < y , .  
Moreover y(t) <<. y,  in this case on a certain time-interval 0 ~< t ~< to, and 

Y(t) >~ C fodt, exp [ - f,'ldv{ l + BYq(z)} ] 

>~ C dtl e x p [ - ( l  +byq)(t - t l )  ] 

= y ,  [ 1 - e x p  ( - C,t)] , O<<.t<~to. (96) 

Let us prove that the inequality (96) holds for all t/> 0. It is obviously 
true if y(t)<<.y, for all t~>0; otherwise we can choose to, such that 
y(to)=y,. Then y(t)>~y, for all t>~to since yt~>0 for any y<<.y,. 
However the inequality y(t)>~ y,  is even stronger than (96), therefore (96) 
is valid for all t >~ 0. This completes the proof (in terms ofy( t ) )  for the case 
y(0) < y , .  

The second case y(0) ~> y ,  is almost trivial. In this case y(t) >1 y,  for 
all t ~> 0 since Yl >~ 0 for any y ~< y , .  Hence, the inequality (96) and the 
estimate y(t)>~min[y(O), y , ]  are valid in the general case. To complete 
the proof we need only to re-formulate the last inequalities in terms of 
x(t) (95). 

Thus, to obtain a desirable estimate z(~) ~< 1 for a solution of (90) it 
is sufficient to satisfy the following conditions (p = 3/2, 2,...): 

O~zp<~l, O~<zp* ~< 1 (97) 

where z* are defined by equations (see (90)) 

F ~ ( z *  ..... * + z *  = 2 A  (1 + 1 / 2 .  Zp - -  1/2) - -  l/2p)(zT)I " 
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We note that A > 0 is still a free parameter. To satisfy the second 
inequality it is sufficient to choose A in such a way that 

).A-(I-1/2p)~9>/1 + max Fp, p = 3/2, 2 .... 

since F3/2 = n / 5  and Fp ~< 8 for p >/2 if max(z* ..... * Zp ~ 1/2) ~< 1. Thus we 
obtain a condition A ~< rain[ 1, (2/9)3/2], 2 = q/3 which guarantees that 
z* ~< 1 for all p ~> 3/2. However q ~< 1 in (64) since 

lim 1 f 1,1~o~-[ dwf (w)  l v - w l = m o = l .  

Therefore to fulfill the second condition (97) it is sufficient to put 

A = (q/27) 3/2. (98) 

The result can be formulated in the following way. 

Lemma 6.4. Let m 0 = l ,  m ~ = E o ,  mp(t) for p=3/2 ,2 , . . ,  satisfy 
inequalities (77), (78) with q ~< 1 for t > 0 and initial inequalities 

mp(O) <~ (q/27) 3/2 a p, p = 1, 3/2, 2 .... (99) 

for certain a > O. Then the inequalities 

mp(t) <~ (q/27) 3/2 a p, p = 1, 3/2, 2 .... (100) 

hold for all t > O. 

Proof. We reduce (77), (78) to (86), (87) by Lemma 6.2. Then we 
apply Lemma 6.3 (92) to the first inequality for p = 3/2. The constant A 
satisfies equality (98). The condition (99) for p =  1 and the estimate 
A =(q/27)3/2< 1/2 guarantee that the constant a satisfies (89). Therefore 
(100) is correct for p = 3 / 2 .  By induction on p = 2  .... we repeat the same 
arguments and complete the proof. 

Theorem 3 follows directly from Lemmas 6.1 and 6.4 since the condi- 
tion (73) guarantees that there exists a > 0 such that inequalities (99) are 
satisfied. Then (100) shows that the integral (74) with 0 .  = a -1 converges 
for all t > 0. 

Remark. The function 

T(t) = �89 0 , ]  ,, 
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where the supremum is taken over all 0, > 0 satisfying (74) for any fixed 
t > 0, is called the tail temperature. Its properties for Maxwell molecules 
were studied in detail in ref. 1. It is also known ~u) that r(t) is a monotoni- 
cally non-decreasing function of t for hard spheres and potentials with 
compact support. 

7. GENERALIZATIONS 

The result of Section 6 can be generalized in different ways. First 
we prove a simple inequality for the collision frequency and generalize 
Theorem 3 to a wider class of initial conditions. 

Lemma 7.1. If mo(t ) = 1, then the collision frequency 

t) =~ f dw f(w, t) I v - w r  (101) 1J(u 

in the Boltzmann Eq. (1) for hard spheres satisfies the inequality 

v(v, t) ~> 7 -1/2 v(v, 0). (102) 

Proof. We note that i f ( z ) = - z  1/2 is obviously a convex function. 
Therefore we obtain by the inequality (12) with A + [ - z  1/2] for hard 
spheres (16) the following lower estimate for mm(t): 

trldm~/2>~dvdwf(v't)f(w't)[v-wl J ~ -~ ~.,x/v~+w~_ ( 1 +w)} 

Using obvious inequalities 

Iv - wl ~ r ~  w 2/> (v - w) 2, Iv - wl (v + w) ~< (v + w) 2 

we get a simple expression 

3dml/2>/moml--7m~/2, m0=l ,  ml=Eo. 
a dt 

Noting then (m~/2), is always non-negative for m~/2<~Eo/7 one can 
easily conclude that 

rn,/2(t) ~> min{m,/z(O), (El7) 1/2} 
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Moreover E~> m2~/2 (a special case of (66)), therefore we obtain an estimate 

1 
ml/2(t) >1 - -  m 1/2(0) (103) 

frequency v(v, t) in the Boltzmann Eq. (1) for hard The collision 
spheres reads 

v(v, t) = a f dwf(w + v, t) Iwl. 

We note that for any fixed v o ~ R 3 the function f (v  + vo, t) satisfies the 
same Boltzmann equation (1) with initial condition f i t  = o = fo(V + Vo). 
Therefore the inequality (102) follows directly from (103). 

Coro l l a ry .  The entropy assumption (73) in Theorem 3 can be 
replaced by a weaker assumption 

~ dwfo(w) Iv - wl >~ Co Ivl 

then all above obtained estimates are valid for q=7-~/2Co in formulas 
(77)-(100). 

It is clear that estimates similar to (102) can be proved for a wide class 
of potentials with compact support by using the inequality (56). Unfor- 
tunately this inequality is not enough for a similar proof of Theorem 3 in 
the general case. However a weaker result can be easily obtained. 

Theorem 4. Let f(v, t) be a solution of the Boltzmann Eq. (1) for 
the potential with compact support. If the initial condition fo(V) satisfies 
the inequality 

f d v  fo(V) e ~ < 

for a certain 0 > 0, then there exist 0 < 0 ,  ~< 0 and a > 0, such that for all 
t > 0  

f dv f(v, t )exp[O,e-~tv 2] < ~ .  (104) 

Proof, 
Noting that 

The proof is based on the simplest estimate of A[z  p] in (6). 

1),2p .9 V wt2P ~ (1)~'2 _~_ Wt2)p 1),2 ..~ W,2 = I)2 ..~ W2 
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for p ~> 1 and therefore 

1),2p § wt2P ~ (i)2 § w2)P, 

we immediately obtain from (5)-(6) the inequality 

dmp .< tr [ - -  . ~ - j d v d w f ( v ,  Of(w,  t) U[(Ij2§ p/> 1 (105) 
dt 2 

where tr = const (46) for potentials with compact support. 
Then we repeat the first steps of the proof to Theorem 3 almost with- 

out any changes. The only difference is that we substitute the estimate (12), 
(16) for hard spheres by the simplest inequality (105). Following the proof 
of Lemma 6.1 we obtain in general case not the inequalities (77), (78), but 
weaker estimates 

tr dt k=~ 

l dm,,+ l/2 ~2n~" (n)  
tr dt k=l k mk+lmn k+mi/2mn+v2+mlmn" 

Then we use the same substitution (82) with A = 1 and repeat the 
proof of Lemma 6.2. It results in inequalities 

zz~ ~< 2(n + 1 ) max (z~ + 1Zn -- k) 
l<~k<~n 

dzn+ 2 d ~/2<<. ( 2 n + 3 ) ( 1 - 6 , 1 )  max (Z~+lZ, ~) 
l<~k<~n 

+~ZlZ,+-~ 1 § Zn+l/2, n = 1, 2,... 

which replace inequalities (86), (87). Then we again use an assumption 
(88) (it is sufficient to choose a < x/~/2Eo) and replace (90) by a simpler 
inequality 

dzp 
dz ~<4(p+ l )  l<~k<~Ep~max (ZkZn_k+l /2 )§  p=2,5/2, . . . ,  dz3/2d~ <<.~+z3/2.rc 

(106) 
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We assume that the constant a in (82) (with A = 1) is chosen in such a way 
that 

mp(O)<~F(p+l/2)a p , p = 1, 3/2,... (107) 

then zp(O)~< 1 in (106). A standard estimate for z3/2(~) (106) results in 

z3/2('c)<~er[z3/2(O)-k-4(l-e ')1 ~<exp I (1  + 4 )  ~1 �9 

For p/> 2 we put 

Zp(r)=yp('C)exp[fl(p-~)'c],  f l~> l+  4, 

then 

-~z p~<4(p+l)~<~<fplmax (y~y,,_k+l/Z)--[]3(p--~)--I 1 yp. 

We note that 

yp(O) ~ 1, yl(r)  ~< 1, Y3/2(~') ~< 1 

and choose fl = 9. Then 4(p + 1 ) < fl(p - 1/2) - 1 for all p ~> 2. Therefore 

yp(r) <~ yp(O) ~< 1, p = 1, 3/2,... 

Hence, inequalities 

rap(t) ---- F(p + 1/2) aPgp('C) <~ F(p + 1/2) aPe ~(p l/2) t 

~ = 9a x/~ , p = 1, 3/2,... 

are valid for any t > 0 if they are valid at t = 0. To complete the proof we 
use the formula (75) and conclude that inequality (105) is fulfilled with 
~ =  9a q/-d and 0 ,  = a  -1, where a is chosen in such a way that 

mp(O) <~ r(p + 1/2) a p, p = 1, 3/2,... 

R e m a r k  1. Theorem 4 can be considered as an a priori estimate 
which shows that there exists a global solution of the Cauchy problem 
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for the spatially homogeneous Boltzmann equation (with potentials with 
compact support) in the class of distribution functions with Maxwellian 
tails. This class is defined by the only condition: there exists such number 
0 > 0 that 

f dv  f ( v )  exp(0v 2) < 

Remark 2. It is clear that the results of Sections 6-7 can be also 
formulated in the following way: if there exist positive constants A and B 
such that mp(O) are less than corresponding moments of the Maxwellian 
A exp(-By2), then there exist a constant A1 > 0 and a function Bl( t)> 0, 
such that mp(t) are bounded by corresponding moments of the Maxwellian 
A~ exp[ -Bl( t )  v 2] for any t > 0. Moreover, B~(t) = B~(0) = const for hard 
spheres, and B~(t)= Bl(0 ) exp(--~t) for a general potential with compact 
support. Constants B~(0) and ~ depend only on the total cross section tr 
and initial condition f0(v). 
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